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BioSym™ is an interactive, blended learning bio-modeling training course.  
 
• BioSym™ addresses important questions relevant to the emerging field of Systems Biology 
• Real life data are used for model building 
• The modular structure allows one to incorporate individual models into science curricula at 

institutions with different needs 
• It is of interest to institutions that do not have the full competence to offer courses in Computational 

Systems Biology 
 
• The concept is based on tested didactical scenarios 
• Experienced teachers, scientists and e-learning experts, are involved in teaching BioSym™ courses 
• It incorporates webbased training, team work and e-collaboration 
• It promotes time independent active participation (distance learning) 
• It offers links to data bases relevant for modeling topics 
 
• BioSym™ is based on widely used mathematical software packages 
• It makes use of OLAT for the organization of courses 
• Lectures can be streamed with specialized lecture recording software and presented in OLAT 
 
• BioSym™ contains modules which can be used in basic as well as in advanced courses 
• Learners acquire skills which make BioSym™ useful for “marketable” professional advancement 
• New contents can be added at any time which assures sustainable usability for a long period of time 
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Poster presentations by members of the BioSym™ group  
  
• BioSym™ - A Systems Biology Learning Network  
 
• A computational modeling approach to systems biology   
 
• Analysis of complex biological systems through computational mathematical modeling   
 
• Bio-Thermodynamics: Understanding glycolysis with quantum chemistry   
 
• Modeling of metabolic networks: A computational approach to functional systems biochemistry and 

metabolic engineering   
 
• Selection and adaptation in microbial communities: A computational modeling approach to 

ecosystem complexity   
 
• Eco-genomics of rumen communities: How similar, in an evolutionary sense, are cellulases from 

different rumen microbes? 
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A Systems Biology Learning NetworkA Systems Biology Learning Network

BioSym™BioSym
A Systems Biology Learning Network produced by

the BioSym™ team**, http;//www.biosym.uzh.ch

Curricular IntegrationCurricular Integration

Learning EnvironmentLearning Environment
• Interactive modules via OLAT
• Matlab Classroom Licenses
• Microsoft Terminal Server
• Recorded Lessons on Flash

Media Server

Information managementInformation management
Find best means of professional
information dissemination

Instruct access to information in
libraries and data banks

Offer information processing /
evaluating techniques

Suggest efficient teaching skills and
learning strategies

Validate teaching approaches
towards learning success

Teaching / Learning ObjectivesTeaching / Learning Objectives

• Supporting mathematical and
quantitative approaches in the life
sciences

• incorporating physical and
chemical principles into biological
understanding

• familiarizing students with the
power of modeling biological
processes and systems

• promoting conceptual teaching
and learning of Systems Biology

• Training the use of MATLAB and
its tool boxes

Learning approachLearning approach
• blended learning
• modular design
• encouraging continuing education
• facilitating distance learning

Module designModule design
• BioSym™ introduces key molecular,

cellular, organismic and systems
concepts

• BioSym™ emphasizes the
quantitative and integrative nature
of biological problems

SPECIAL APPLICATIONS: Models for practical use as
they emerge from research in the life sciences, and as
they are developed for bio-tech applications and for
systems analyses.

e.g. Pattern analyses
of ecological
determinants

e.g. Gene flux and
gene transfer in

evolution

e.g. Energy fluxes
material cycles for

environmental
management

e.g. Pattern
recognition

e.g.Statistical
comparison
genomics,
proteomics

GOALS
Ability to design

simulation and modelling
programs for particular applications

and for broad use in teaching and research.

etc.



 
A computational modeling approach to systems biology 
 
Christoph Fuchs (christoph.fuchs@mnf.uzh.ch) and Kurt Hanselmann 
(kurt.hanselmann@hispeed.ch), BioSym™ - Computational Systems Biology, Institute 
of Mathematics, University of Zürich, Winterthurerstr. 190, 8057 Zürich 
 
 
Today it has become essential to employ mathematical models as research tools at all levels 
of biology. BioSym is a compilation of interactive models which can be used to study 
biological systems quantitatively, from the molecular to the ecosystem level. The models are 
based on biological and physicochemical principles which can be expressed with 
mathematical algorithms. They are offered under http://www.biosym.unizh.ch/index.php. 
BioSym contains classical deterministic models and more complex stochastic ones (e.g. 
epidemics, metabolic networks, gene regulation and metabolic control, physiology, 
gene/protein evolution etc.). On an advanced level, it introduces models which can assist 
users in designing quantitative experiments with proper boundary conditions and handling 
large data sets. Systems biology with BioSym is a logical step towards synthesizing details 
and fragments of knowledge into a more holistic view of biology, and it can serve as a 
motivation to deal with the complexity inherent to many biological systems.  
Courses which are offered by the BioSym team introduce users to model building, show 
them how to design mathematical models and train them how to use simulations. The 
learning modules are primarily based on MATLAB and its toolboxes. Many models contain a 
Java Applet or a Flash animation to illustrate the details of the background. 
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Analysis of complex biological systems through computational 
mathematical modeling  
 
Stefan Schafroth (stefan_erst@gmx.ch) and Kurt Hanselmann (kurt.hanselmann@hispeed.ch), 
BioSym - Computational Systems Biology, Institute of Mathematics, University of Zürich, 
Winterthurerstr. 190, 8057 Zürich 
 
 
Studies dealing with the regulation of metabolic or hereditary processes in a cell, or with the 
mode of action of a drug in an organ or the behavior of organisms in communities and their 
responses to ecosystem determinants are often very complex processes. Mathematical 
approaches allow one to reduce the complexity of biological systems to understandable models 
and to describe processes and interactions quantitatively. However, every model is an 
idealization of the real world; models describe only those mechanisms that contribute 
essentially to observed or postulated phenomena. Mathematical models require that either well 
defined data sets are available from the literature or that unknown model parameters can be 
estimated from experience or expert knowledge. Another reason for applying computational 
modeling in biology is the generation and validation of hypotheses. A well constructed model 
can lead to predictions, which can then be tested experimentally. Deviations between the 
predictions and the actual observation can lead the investigator to improve the model and to 
design new experiments. 
The poster presents an overview of the modeling workflow, it summarizes mathematical 
approaches for statistical significance tests, time series analysis as well as deterministic and 
stochastic kinetic models. They are illustrated with examples from different fields taken from 
BioSym, a Systems Biology Modeling Network. 
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Mathematical Mathematical modelingmodeling
in biology: 3 good reasonsin biology: 3 good reasons

• Managing complexity and handling
uncertainty: A model is always an
idealization of the real world using only well
defined input data.

• Modeling requires abstraction: The model
describes only those underlying
mechanisms that contribute most strongly to
the observed phenomenon.This results in a
reduction of complexity.

• Generation and validation of hypotheses:
A good model can produce observable
predictions. Deviations of predictions from
actual observations can lead to model
improvement.

Models Models can illustrate can illustrate simplesimple
relationshipsrelationships

Example: How bacteria consume
substrates. Application of a rate flow
model.

The use of deterministic andThe use of deterministic and
stochastic algorithmsstochastic algorithms

Basic techniques for time seriesBasic techniques for time series
analysisanalysis

Time series data often arise when
monitoring physical processes. Time
series analysis accounts for the fact that
data points taken over time may have an
internal structure (such as auto-
correlation, trend or seasonal variation)
that should be accounted for.

Exponential smoothing
Exponential smoothing assigns
exponentially decreasing weights as
the observations get older. This is in
contrast to single moving averages
where past observations are weighed
equally. Exponential smoothing is a
very popular scheme to produce a
smoothed time series.

Double exponential smoothing uses
two constants and is better at handling
trends.

Simple models can showSimple models can show
complex behaviourcomplex behaviour

In 1976 the Australian theoretical ecologist
Robert May showed that simple first order
difference equations can have very complicated
or even unpredictable dynamics. The Logistic
Difference Equation (LDE) is a model to explore
the route into chaotic behaviour. The route to
chaos starts with period doublings.

LDE: Stable cycles with period k. The red line
represents the trajectory (time course) of the
system in the phase plane.

In the refinement process these stages are
repeatedly executed in a virtually never-
ending process which generates models of
increasing generality and validity.

Conceptualization

Formulation

Numerical 

Implementation

Computation

Validation

Refinement
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alpha=0.1, mse=0.43159
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alpha=0.9, mse=0.31097
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Analysis of Complex Biological SystemsAnalysis of Complex Biological Systems

A A modeling modeling workflow consists ofworkflow consists of
five stagesfive stages

C external nutrients
X0 unoccupied receptor
X1 occupied receptor
P internal nutrients
X0+X1 = constant

dC/dt = -k1C*X0 + k-1X1
dX0/dt = -k1C*X0 + k-1X1+ k2X1
dX1/dt =k1C*X0 - k-1X1- k2X1
dP/dt = k2X1

 
C + X

0

k1! "! X
1
  ;    X

1

k
#1! "! C + X

0
  ;    X

1

k2! "! P + X
o

C and X0 can combine to form the complex X1
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Bio-Thermodynamics: Understanding glycolysis with 
quantum chemistry 
 
Hans Ulrich Suter (suter@physik.uzh.ch) and Kurt Hanselmann 
(kurt.hanselmann@hispeed.ch), BioSym - Computational Systems Biology, Institute 
of Mathematics, University of Zürich, Winterthurerstr. 190, 8057 Zürich 
 
 
With the software GAMESS-US it has become possible to calculate the thermodynamic 
properties, such as Enthalpy and Free Energy of formation with an accuracy of about 4 
kJ/mole for any molecular species. Calculations are based on the geometrical structure of  
molecules, which are available in PDB-databases. As an example, we calculated the 
Enthalpy of alpha-D-Glucose as 1215 kJ/mole and the free energy as -907 kJ/mole, which 
agrees well with experimental value of -917.2 kJ/mole for 25°C. Unfortunately, quantification 
of the  interaction of molecules with the aqueous cytoplasmic matrix of a living cell 
(solvatation effect) is not yet possible, and the calculations for large molecules requires long 
calculation times. Using standardized quantum chemistry methods we calculated 
thermodynamic values for a number of biomolecules and designed bio-thermodynamic 
models for intermediary reactions of the glycolysis pathway. Values for most glycolysis 
intermediates have not been determined experimentally and can only be obtained through 
calculation. Special care needs to be taken to calculate the correct protonated state of the 
carboxylic acid intermediates for cytoplasmic pH-conditions. The poster will outline the 
calculation procedure and illustrate the usefulness of the approach in systems bio-
thermodynamics with a few examples. 
 
 
 
 
  
 



Bio-thermodynamic models inBio-thermodynamic models in

metabolismmetabolism

GlycolysisGlycolysis

Energetic analysis of Energetic analysis of glycolysisglycolysis

Understanding Understanding glycolysis glycolysis with quantum chemistrywith quantum chemistry

Fig.1 The 5 steps in glycolysis:

I:Phosphorylation of glucose associa-
ted with ATP “investments”;

II: Splitting of a C6 sugar into two C3

compounds; III: Oxidation and first

ATP gain; IV: Phosphoglyceralde-
hyde to phosphoenolpyruvate trans-

formation and V: Second ATP gain.

Calculations forCalculations for

glycolysis glycolysis intermediatesintermediates

** Network Partners** Network Partners: University Zurich, ETH Zurich, ZH Winterthur, University Fribourg, Ruhr University Bochum,  WHO Geneva, Roche Basel, University

Hospital Basel.  Collaborators UZH: Collaborators UZH: Barbour Andrew D. math., Brammertz Stefan biol., Fuchs Christoph1 inform., Hanselmann Kurt2 biol., Heinzmann

Dominik math., Kälin Roman math., Lazzaretti Maja biol., Schafroth Stefan phys., Suter Hans Ulrich chem.

 1 biosym@mnf.uzh.ch, 2 i-research.training@hispeed.ch

Table 1 Geometry and electronic energies

are optimized employing GAMESS.

Standardized quantum chemistry me-

thods were employed to calculate

thermodynamic values for a number

of molecules, which then served to

design bio-thermodynamic models
for reactions of the Emden-Meyerhof-

Parnas pathway (glycolysis).

Calculations with the g3mp2 method give

maximum useful precision (error of about 6

kJ/mol) within an optimal calculation time.
Values for larger molecules (ATP, ADP)

were calculated with the b3lyp/6–31G**

method, whose error is up to 10x larger.

For NAD+ and NADH we only calculated

the nicotinamide fragment, which changes
its structure during the redox process. For

dissolution of molecules in water we

applied the PCM calculation method.

Assumption: Molecules are synthesi-

zed from the elements:

6C + 6H2 + 3O2               C6H12O6

Enthalpy, entropy, free energy (Gibbs

energy) of formation are defined as:

Hf° = Eel+Evib(T)+Etrans(T)+Erot(T)+

Esol(T)+RT
Sf° = Svib(T)+Strans(T)+Srot(T)

Calculation method illustratedCalculation method illustrated

forfor  ––DD––GlucoseGlucose

Hf°glc = Hfglc - 6HfC - 6HfH2 - 3HfO2 = -1163 kJ/mol

Gf°glc = Gfglc - 6GfC - 6GfH2 - 3GfO2 = -854.7 kJ/mol

Add solvatation enthalpy: -52.2 kJ/mol

Hf°glc, solv = -1215 kJ/mol

Sf°glc = -1.035 kJ/mol

Gf°glc, solv = -1215 - 298.15 (-1.035) = - 907 kJ/mol

(experimental value = –917.2 kJ/mol)

b3lyp*  b3lyp* g3mp2* g3mp2*

Hf Gf Hf Gf

C -38.1320 -38.1228 -38.0561 -38.0579

H2 -1.1650 -1.1799 -1.1668 -1.1816

O2 -150.2503 -150.2726 -150.1610 -150.1610

glc -686.9737 -687.0232 -686.2639 -686.3151

Values in Hartree; 1 Hartree = 627.51 kcal/mol =  2626 kJ/mol

* Method of calculation in GAMESS. glc = C6H12O6 = glucose

Gf° = Hf° - TSf° 

Fig.2 Calculations based on approx.

geometrical structure and number of
electrons. Data from PDB-databases.

The solvent is water.

** For abbreviations see figure 1

Table 2 Standard enthalpies and

energies of formation

g3mp2-674-835mNADH

g3mp2-953-812mNAD1+

b3lyp-7223-7594ATP4-

b3lyp-5154-5545ADP3-

g3mp2-501-584pyr1-

g3mp2-1604-1679pep3-

g3mp2-2395-25262pg3-

g3mp2-2775-28863pg3-

g3mp2-4485-4598bpg4-

g3mp2-2101-2210ga3p2-

g3mp2-2088-2194dhap2-

b3lyp-4699-4434fdp4-

b3lyp-2312-2761f6p2-

b3lyp-2504-2816g6p2-

g3mp2-907-1215glc-D

Method of

calculation

Gf°

[kJ/mol]

Hf°

[kJ/mol]

Molecule

in H2O**

References
GAMESS:http://www.msg.ameslab.gov/GAMESS/game

ss.html

PCM: http://www.cup.uni-

muenchen.de/oc/zipse/compchem/solv/pcm.html

G3MP2: http://www.cup.uni-

muenchen.de/oc/zipse/compchem/thermo/G3MP2.html

ga3p2- +NAD1+ +Pi2- <=> bpg4- +NADH +H+

Glyceraldehydephosphate-dehydrogenase

Gr*= -2384  [kJ/mol]

3pg3- <=> 2pg3-

Phosphoglycerate-mutase

Gr*= +380 [kJ/mol]

2pg3- <=> pep3- + H2O

Enolase

Gr*= +791 [kJ/mol] 

pep3- + ADP3-  + H+ <=>  pyr1- + ATP4-

Pyruvate kinase

Gr*= +1103  [kJ/mol]

glc-D + ATP4-  => g6p2- + ADP3- + H+

Gluco-kinase

Gr*= -1597  [kJ/mol]

2x

2x

2x

2x

2x

f6p2- + ATP4-  => fdp4- + ADP3- + H+

Phosphofructo-kinase

Gr*= -2387  [kJ/mol]

g6p2- <=> f6p2-

Phosphoglucose-isomerase

Gr*= +183  [kJ/mol]

fdp4- <=> dhap2- + ga3p2-
Fructosebisphosphate-aldolase

Gr*= +510  [kJ/mol]

dhap2- <=> ga3p2-

Triosephosphate-isomerase

Gr*= -13  [kJ/mol]

Gr* = Gfproduct-Gfeduct

C6 and C3 metabolites only

Gr*>0 = energy loss

Gr*<0 = energy gain

ADP3- +Pi2- + H+ <=> ATP4- + H2O

ADP kinase

Gr*= -2069  [kJ/mol]

g6p2-

f6p2-

fdp4-

ga3p2-
dhap2-

bpg4-

3pg3-

2pg3-

pep3-

pyr1-

glc-D

bpg4- + ADP3- <=> 3pg3- + ATP4-

Phosphoglycerate-kinase

Gr*= +1710  [kJ/mol]

glc-D  =>  2 pyr1- + 2H+ + 4[H]

Gr*= - 95  [kJ/mol]
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Modeling of metabolic networks: A computational 
approach to functional systems biochemistry and 
metabolic engineering 
 
Stefan Brammertz (sbrammertz@gmail.com) and Kurt Hanselmann 
(kurt.hanselmann@hispeed.ch), BioSym - Computational Systems Biology, Institute 
of Mathematics, University of Zürich, Winterthurerstr. 190, 8057 Zürich 
 
 
The biochemistry of individual reactions in the Embden-Meyerhof-Parnas pathway 
(glycolysis), the Krebs cycle (citric acid cycle) and the Calvin-Benson cycle (pentose 
phosphate pathway) are well established. These three pathways and a number of 
related ones play key roles in cellular processes of many aerobic and anaerobic, 
prokaryotic and eukaryotic organisms. We made an attempt to design mathematical 
models for the quantitative analysis and dynamic simulation of these pathways. The 
models are based on Michaelis-Menten rate equations and mass transfer concepts; 
the software Simbiology (The Mathworks) is employed for model design. The models 
allow one to study interactions between different processes with linked biochemical 
reactions, the regulation of enzymes and process optimization. Enzyme parameters 
(Km, Ki, vmax, etc.) and concentrations of metabolites are compiled from different 
databases available on the www (BRENDA, KEGG, ExPASy, etc.) and from scientific 
publications. The values are then screened for reliability and missing values are 
chosen based on expert knowledge.  
Dynamic models are excellent learning and research tools because they allow one to 
study the role of individual enzymes within complex cellular metabolic networks which 
may lead to new hypotheses. Numerous options can be tested in silico before one 
designs and carries out experiments in vivo or in vitro.  



Computational Models inComputational Models in

Enzyme KineticsEnzyme Kinetics

Dynamic models are excellent learning

and research tools because they allow
one to study the role of individual

enzymes within complex cellular net-

works. We developed mathematical

models based on SimBiology (The

Mathworks) for the quantitative analysis
and dynamic simulation of metabolic

pathways like EMP (glycolysis), oCAC

(Krebs cycle) and rCBB (Calvin cycle).

2. 2. oCACoCAC in  in MitochondriaMitochondria  (1)(1)

1. 1. Glycolysis Glycolysis in yeast in yeast (3)(3)

DiscussionDiscussion

Fig.3 Glycolysis model in SimBiology

Fig.1 Glycolysis in yeast, a

prerequisit for ethanol production

Conceptual models (Fig.7) allow one to

define reactions, enzymes and compart-

ments for designing mathematical
models in SimBiology, e.g. rCBB (Fig.8)

Fig.4 Adjustment of metabolite concentrations

with different time resolutions.

Most intermediates quickly reach ± constant

intracellular steady state concentrations.

References
1. KELLY, Patrick J. et al. (1979). The tricarboxylic acid cycle in

Dictyostelium discoideum a model of the cycle at preculmination

and aggregation. Biochem. J. 184, 589-597

1. PETTERSSON, Gosta and Ulf Ryde-Pettersson (1988). A

mathematical model of the Calvin photosynthesis cycle. Eur. J.

Biochem. 175, 661 -672

2. TEUSINK, Bas et al. (2000). Can yeast glycolysis be understood in

terms of in vitro kinetics of the constituent enzymes? Testing

biochemistry. Eur. J. Biochem. 267, 5313-5329

Modeling metabolic networksModeling metabolic networks  
A computational approach to functional biochemistry and metabolic engineeringA computational approach to functional biochemistry and metabolic engineering

Fig.2 Glycolysis (EMP) from glucose to

pyruvate can be divided into 5 steps. I:

Phosphorylation of glucose associated
with ATP “investment”; II: Splitting of a

C6 sugar into two C3 compounds; III:

Oxidation and first ATP gain; IV:

Glycerate-phosphoenolpyruvate trans-

formation, V: Second ATP gain.

Fig.5 The oxidative

citric acid cycle (o-

CAC) oxidizes cata-

bolites to CO2 and
produces anabolic

intermediates. It is

located in mito-

chondria, but it must

be linked with pro-
cesses that take

place in other cell

compartments.

Fig.6 oCAC model in SimBiology

Results of a simulationResults of a simulation

The most critical steps in metabolic
modeling are compiling experimental

numerical values for:

- the concentration of metabolites and

coenzymes under steady-state con-

ditions,
- the characteristic kinetics and  

regulatory sensitivities of enzymes

(Km, Ki, vmax, etc.).

Most commonly used databases are:

BRENDA, KEGG and SWISSPROT.
Expert knowledge is required to

calculate reasonable modeling values

from a variety of experimental data

obtained under different conditions.

** Network Partners** Network Partners: University Zurich, ETH Zurich, ZH Winterthur, University Fribourg, Ruhr University Bochum,  WHO Geneva, Roche Basel, University
Hospital Basel.  Collaborators UZH: Collaborators UZH: Barbour Andrew D. math., Brammertz Stefan biol., Fuchs Christoph1 inform., Hanselmann Kurt2 biol., Heinzmann

Dominik math., Kälin Roman math., Lazzaretti Maja biol., Schafroth Stefan phys., Suter Hans Ulrich chem.
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3. 3. rCBB rCBB in Chloroplasts in Chloroplasts (2)(2)

The reductive Calvin-Benson-Bassham

cycle (rCBB) accounts for CO2 fixation
in the stroma of chloroplasts and in

many autotrophic bacteria and a few

archaea. It is linked to other cell com-

partments for the supply of ATP and
NAD(P)H needed for the regeneration

of the CO2 acceptor, ribulose-1,5 bis-

phosphate (Fig.7).

Fig.8 rCBB-model

CO2 fixation and

RuBP regenera-

tion in the stroma.

ATP and NADPH

production takes

place in other cell

compartments

Fig.9 Adjustment phases to steady state in

the stroma; normalized starting conditions

Results of an Results of an rCBB rCBB simulationsimulation
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Selection and adaptation in microbial communities: A 
computational modeling approach to ecosystem 
complexity  
 
Roman Kälin (rkaelin@amath.uzh.ch), Munti Yuhana (myhn@gmx.ch) and Kurt 
Hanselmann (kurt.hanselmann@hispeed.ch), BioSym - Computational Systems 
Biology, Institute of Mathematics, University of Zürich, Winterthurerstr. 190, 8057 
Zürich 
 
 
Stability and dynamics of an ecosystem depends on the ability of its organisms to 
interact with each other and to quickly respond to perturbations. We have studied 
changes in microbial community compositions in a remote high mountain lake that 
seasonally passes through extremes of environmental changes. The ecosystem was 
analyzed applying molecular techniques which are based on biomolecular indicators 
and combined with measurements of physicochemical ecosystem determinants. The 
diversity of organisms is overwhelming and, due to the variability of parameter 
combinations under natural conditions, one can seldom observe similar population 
compositions under seemingly similar environmental settings. Instead, numerous 
community patterns emerge from the lake’s population pool which allow one to create 
hypotheses and concepts about the role of selection and adaptation in community 
regulation. 
We have developed a computational “selection-adaptation model” based on 
extended Lotka-Volterra algorithms that allows one to simulate population 
development and disappearance with predetermined parameter assignments. The 
investigator can define stabilizing and destabilizing mechanisms and follow 
population diversity changes.  
An understanding of ecosystem complexity cannot be reached by observation and 
experimentation alone. Good theoretical models help one to carry out numerous 
simulations in silico and to define those environmental determinants and organismic 
characteristics that might play essential regulatory roles. 
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How can diversity be altered ?How can diversity be altered ?

Microbial ecosystems that contain diverse

populations respond to variable conditions

by adjusting community homeostasis

rapidly.

This flexibility requires ...

ConclusionsConclusions

The The Lotka-Volterra-like Lotka-Volterra-like modelmodel[1,2]

x
i
(t+1) = x

i
(t)* exp(r-

j
 b

ij
*x

j
(t))

i = 1,...,n

in matrix notation:

X(t+1) = X(t)*exp(R-B*X(t))

Fig.3 Example: Development of 4 populations

under 2 different regulatory settings

left: A = 18.7, B = 458.5, C = 0.0004, D = 0.89

right: A = 1.2, B = 176.4, C = 0.0008, D = 0.01

Fig.5 Responses of communities to change

Top row: What will happen if the initial

population size changes only slightly?

Middle row: What will happen if, in a stable

community, the most common population

goes extinct? Left: All remaining populations

survive, but steady state composition

changes; right: some other populations go

extinct as well.

Bottom row: What will happen if a new

population can establish itself in a steady

state community? Left: All populations

survive, but steady state composition

changes; right: some populations go extinct
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Selection and adaptation in microbial communitiesSelection and adaptation in microbial communities

Fig.2 Simulink / Matlab diagram implementing the

eight equations above

• minimal population sizes

• energy and resources for reproduction

• responses to environmental signals

• gene exchange mechanisms

• fitness of organisms for change

• selection of positive mutations

• interacting populations

• many more

4-population competition model with4-population competition model with

4 regulatory variables4 regulatory variables[3]

a1 = a1A·A*1 + a1B·B*1 + a1C·C*1 + a1D·D*1

a2 = a2A·A*2 + a2B·B*2 + a2C·C*2 + a2D·D*2

a3 = a3A·A*3 + a3B·B*3 + a3C·C*3 + a3D·D*3

a4 = a4A·A*4 + a4B·B*4 + a4C·C*4 + a4D·D*4

Outcome of simulations with AppletOutcome of simulations with Applet

Fig.1 Modes of community changes through

selective „filtering“ (examples)

Fig.4 Start and end simulations for a 4

populations /4 regulatory settings model

Concepts ofConcepts of  aa

selection / adaptation modelselection / adaptation model

dX1/dt = a1·X1-a12·X1·X2-a13·X1·X3-a14·X1·X4-a11·X1
2

dX2/dt = a2·X2-a21·X1·X2-a23·X1·X3-a24·X1·X4-a22·X2
2

dX3/dt = a3·X3-a31·X1·X3-a32·X2·X3-a34·X3·X4-a33·X3
2

dX4/dt = a4·X4-a41·X1·X4-a42·X2·X4-a43·X3·X4-a44·X4
2

Fig.6 Enumeration of microbial community compo-

sition in Lake Jöri by FISH analysis. % of hybridi-

zed cells in relation to total detected DAPI counts.

Computational models may help to under-

stand complex community changes that can

or cannot be analyzed experimentally (Fig.6)

Here, we introduce computational

approaches to diversity modeling applying

Matlab and Simulink (The Mathworks).

• Xi = size of population (pop.) i, i = 1, 2, 3, 4

• A, B, C, D = regulatory settings: radiation,

nutrients, fitness, gene exchange, etc.

• ai = growth rate of pop.i altered by A,B,C,D

• aij = influence of pop.j on growth of pop.i

• aiJ = effect of regulatory setting J on growth

rate ai of population i, i = 1,2,3,4,

J = A,B,C,D; aiJ > 0: growth stimulated,

aiJ <0: growth hindered

• J*i = normalized impact 0  J*i 1
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Eco-genomics of rumen communities:  
How similar, in an evolutionary sense, are cellulases 
from different rumen microbes? 
 
Maja A. Lazzaretti-Ulmer (maja.lazzaretti@math.uzh.ch) and Kurt 
Hanselmann (kurt.hanselmann@hispeed.ch), BioSym - Computational 
Systems Biology, Institute of Mathematics, University of Zürich, 
Winterthurerstr. 190, 8057 Zürich 
 
 
The rumen is a complex ecosystem. Its microbiota comprises mostly 
anaerobic bacteria and archaea, anaerobic, ciliated protozoa and anaerobic 
fungi. Cellulose (C6H10O5)n is enzymatically hydrolized in a first step by 
cellulases produced by some members of the microbiota. The resulting di- 
and monosaccharides are then further utilized by the same and by other 
microbes of the community, which produce volatile fatty acids, CO2, CH4 and 
a number of other metabolites. 
We retrieved amino acid sequence information for cellulase proteins for a 
number of rumen microorganisms (Butyrivibrio fibrisolvens, Clostridium 
longisporum, Fibrobacter succinogenes, Prevotella ruminicola, Ruminococcus 
albus and Ruminococcus flavefaciens) from different data bases as well as of 
Pyrococcus abyssi, an Archaeon, which is not a member of any rumen 
community, and compared them employing the Pfam Protein Families 
Database tools and the softwares ClustalX and PHYLIP. The resulting 
phylogenetic tree was then compared with the phylogenetic tree made for the 
same microorganisms based on their 16S rRNA data. The two trees revealed 
interesting differences, which suggest that cellulase genes were in some 
cases obtained by horizontal gene transfer. It is surprising that this should 
have been happened between microorganisms of different domains and the 
transfer path between mesophilic bacteria and thermophilic archaea remains 
to be further investigated. 
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ApproachApproach

• Retrieve amino acid sequence information for

cellulase proteins from different data bases for

B. fibrisolvens, C. longisporum, F. succinoge-

nes, P. ruminicola, R. albus, R. flavefaciens as

well as of Pyrococcus abyssi, an Archaeon,

that is not a member of any rumen community

(Tab.2, Fig.4).

• Analyze the sequences employing Pfam

Protein Families Database tools, ClustalX,

PHYLIP and Bioinformatics toolbox (Matlab).

• Construct a phylogenetic tree for cellulases

and compare to the phylogenetic tree for the

same microorganisms based on 16S rRNA

gene sequence data (Fig.5)

Enzymes for biotechnologyEnzymes for biotechnology

from rumen organismsfrom rumen organisms

• In herbivorous ruminants, such as cattle,

dairy cows, goats and sheep, fibrous

plant polymers (cellulose, hemi-

celluloses etc.) are hydrolized and fer-

mented in a series of complex catabolic

reactions, which are carried out in the

rumen by many different anaerobic

microorganisms (Fig.1, Tab.1)

• Fibrolytic enzymes are produced

exclusively by the rumen microbiota

• In this study we focus on the evolu-

tionary relationships among cellulases

(Fig.2, step 2; Fig.3)

• How much orthology, how much

xenology can we detect among

homologous cellulases?

Fig.1 The rumen community consists of a

great diversity of bacteria, archaea and

eukarya, e.g. protozoa and fungi.

CellulasesCellulases

Fig.3 Cellulose + H2O  Cellulose + Cellobiose

KEGG reaction R02886

Cellulase: EC 3.2.1.4:

Endohydrolysis of 1,4- -D-glucosidic linkages

ConclusionsConclusions

• Differences in phylogenies: cellulase

genes were in some cases probably ob-

tained by horizontal gene transfer (HGT).

• HGT of endoglucanase (celA) from the

rumen bacterium F.succinogenes to the

rumen fungi Orpinomyces joyonii was

postulated by Garcia-Vallvé et al. (2000).

• Cohen et al. (2003) reported on proteins,

presumably of bacterial origin, including

some from mesophilic bacteria, to be pre-

sent in the Pyrococcus abyssi genome.

This implies that HGT could have

happened between organisms of different

domains.

• The transfer path between mesophilic

bacteria and thermophilic archaea remains

to be investigated further.
Fig.2 1 Lysis of cells and tissues, 2 Hydrolysis of

biopolymers, 3 Primary fermentation, 4 Secondary
fermentation, 5 Acetogenesis, 6 Methanogenesis

6 Levels of a rumen food web6 Levels of a rumen food web

Grass, Hay,

Plant fibres

Pfam and 

UniProtKB 
Entry name  

UniProtKB 

Primary 
accession 

number  

Protein nam e  Origin of the 

prote in  
Abbreviation *  

Rumen Bacteria:  
GUN1_BUTF I  P2084 7  Endoglucanase 1  Butyrivibrio 

fibrisolven s  
Butyri_f ib  

GUNA_CLOL O  P5493 7  Endoglucanase A 

precursor  
Clostridium 

longisporu m  
Clostr_lo n  

Q59445_FIBSU Q5944 5  Endoglucanase 3 
precursor  

Fibrobacter 
succinogenes  

Fibrob_su c  

Q9ZN63_PRERU  Q9ZN6 3  Cellulase  Prevotella 

ruminico la  
Prevot_rum  

GUN1_RUMA L  P1621 6  Endoglucanase 1 
precursor  

Ruminococcus 
albus  

Rumino_alb  

O05143_RUMF L  O0514 3  Endoglucanase A 

precursor  
Ruminococcus 

flavefacien s  
Rumino_fla  

Archaeon isolated from a deep-sea hydrothermal vent (as outgroup) :  
Q9V052_PYRAB  Q9V05 2  Major extracellular 

endo-1,4-

betaglucanase  

Pyrococcus 

abyssi  

 

Pyroco_aby  

CellulasesCellulases, alignment, phylogeny, alignment, phylogeny
Table 2. Protein sequence identification and
corresponding abbreviation (* needed in the
application with ClustalX and PHYLIP)

Fig.4 Details of aligned aminoacid sequences of

cellulases from the studied microorganisms. The

Pfam predicted active sites (2 glutamates, E) are

very well conserved. (The sequence from

Prevotella ruminicola cellulase is shorter).

Fig.5 Phylogenetic trees of six rumen bacteria and

an Archaeon (P. abyssi), based on 1000 bootstrap

samples each for the 16S-rRNA (top) and the

amino acid sequences of the cellulase (below).

Rumino alb

Butyri fib

Clostr lon

Rumino fla

Pyroco aby

Prevot rum

Fibrob suc

1000

420

668

797

602

Pyroco aby

Prevot rum

Fibrob suc

Clostr lon

Butyri fib

Rumino alb

1000

721

968

577

999
Rumino fla

Butyri_fib 
Clostr_lon 
Rumino_alb 
Rumino_fla 
Pyroco_aby 
Prevot_rum 
Fibrob_suc 

ruler 

Butyri_fib 
Clostr_lon 
Rumino_alb 
Rumino_fla 
Pyroco_aby 
Prevot_rum 
Fibrob_suc 

ruler 

Functionally homologous fibrolytic enzymes are

present in taxonomically very different rumen

microorganisms (e.g. bacteria; Tab.1)

Table 1. Selected Bacteria and Archaea of the rumen

microbiota and their catabolic abilities.
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