P XXX/00 Abbreviations used in Biothermodynamics

a, b, c, d, e, f, g, x, y, z,	stoichiometric coefficients
act	actual conditions, e.g. T_{act}
a _i	ion size parameter in [10 ⁻⁸ cm]
(am)	amorphous state
(aq)	aqueous state
[atm]	standard atmosphere: 1 [atm]= 101325[Pa]= 760[Torr]= 1.01325[bar]
a _w	water activity
bar	$1 [bar] = 10^{5} [Pa] = 0.986923 [atm] = 750.062 [Torr]$
c	denotes combustion
c ₀	speed of light in vacuum = $299792458 \text{ ms}^{-1}$
C:	concentration of chemical species i
\mathbf{c}_{i}^{0}	standard concentration of species j [1 mol/dm ³]
e	electron
e	base of natural logarithm = 2.71828182846
e	elementary charge = $1.60217733(49) \cdot 10^{-19}$ Coulomb
emf	electromotive force
eq	<i>eq</i> uilibrium
exp	exponential function to base e
f	denotes thermochemical quantity associated with the formation of a
	substance from elements in their reference state, e.g. Gf, Hf, Sf
\mathbf{f}_{j}	Debye-Hückel activity correction factor
(g)	gaseous state
g _n	standard acceleration = 9.80665 ms^{-2}
h	Planck constant = $6.6260755(40) \cdot 10^{-34}$ Js
h	surplus charge of biomolecule
i, j	chemical species designation
k	Boltzmann constant = $1.380658(12) \cdot 10^{-23} \text{ JK}^{-1}$
(1)	<i>l</i> iquid state
[1]	liter
ln	natural logarithm = $2.30258509299 \cdot_{10} \log$
ln 10	natural logarithm of $10 = 2.30258509299$
m	slope of linear function
n	number of electrons transferred
neq	<i>n</i> on- <i>eq</i> uilibrium
OX	oxidized
p	pressure
\mathbf{p}^{0}	standard state pressure 1[atm] (earlier), 1[bar] (today)
pe	-log {e ⁻ }; electron activity
pe ⁰	electron activity reference state = $\frac{1}{n} \cdot \log \text{Keq} = \frac{F \cdot E^0}{2.3026 \text{ R} \cdot \text{T}}$
pН	$-\log \{H^+\}$, negative logarithm of proton activity
pK	-log K
± q	number of protons transferred, + if they are produced, - if they are consumed

r	denotes thermodynamic quantity associated with a reaction, e.g.
	$\Delta G_r, \Delta H_r, \Delta S_r$
ref	<i>ref</i> erence state e.g. $T_{ref} = 298.15[K]$
red	reduced
(s)	solid state
$\mathbf{v}_{i,j}$	stoichiometric coefficients of species i, j
x, y, z	stoichiometric coefficients
y ₁	intercept on y-axes
Zj	charge of species j
	designates concentration, or monomer unit
Z _j [] {} <>	designates activity
	designates hypothetical unit molecule, e.g. for biomass
$[-C_aH_b-]$	designates repetitive molecular fragment, e.g monomer molecule
$[C(H)_2(C)(CO)]$	designates group increment
$\alpha_0, \alpha_1, \alpha_2$	acid-base pair distribution coefficients
$\gamma_0, \gamma_1, \gamma_2, \varepsilon_0, \varepsilon_1, \vartheta_0, \vartheta_1, \vartheta_2$	for mono- and diprotic acids
Σ	sum of terms
Π	product of terms
$\boldsymbol{\epsilon}_{\mathrm{T}}$	temperature-dependent dielectric coefficient of water
π	ratio of circumference to diameter of a circle = 3.14159265359
$\sigma = 2\pi^5 k^4 / 15h^3 c^2$	Stefan-Boltzmann constant = $5.67051(19) \cdot 10^{-8} \text{ Wm}^{-2} \text{ K}^{-4}$
σ	symmetry factor
I1, II-, V+, U, R, etc.	designates oxidation states
+, -, 2-, 3+, h, etc.	designates ionic charges
	denotes standard state conditions with reactants in their pure state at a
	1
	pressure of 1 [atm] if the reactants are gases or 1-molal concentration if
0'	pressure of 1 [atm] if the reactants are gases or 1-molal concentration if the reactants are solutes
	pressure of 1 [atm] if the reactants are gases or 1-molal concentration if the reactants are solutes denotes standard state except for 1 reactant (e.g.pH≠0)
A, B, C, D,X, Y, Z	pressure of 1 [atm] if the reactants are gases or 1-molal concentration if the reactants are solutes denotes standard state except for 1 reactant (e.g.pH≠0) chemical species
	pressure of 1 [atm] if the reactants are gases or 1-molal concentration if the reactants are solutes denotes standard state except for 1 reactant (e.g.pH≠0) chemical species Debye-Hückel-Onsager parameters
A, B, C, D,X, Y, Z A, B	pressure of 1 [atm] if the reactants are gases or 1-molal concentration if the reactants are solutes denotes standard state except for 1 reactant (e.g.pH \neq 0) chemical species Debye-Hückel-Onsager parameters A=1.82·10 ⁶ (ϵ_{T} ·T) ^{-3/2} , B=50.3·(ϵ_{T} ·T) ^{-1/2}
A, B, C, D,X, Y, Z A, B A ⁻ , A ²⁻	pressure of 1 [atm] if the reactants are gases or 1-molal concentration if the reactants are solutes denotes standard state except for 1 reactant (e.g.pH \neq 0) chemical species Debye-Hückel-Onsager parameters A=1.82·10 ⁶ (ϵ_{T} ·T) ^{-3/2} , B=50.3·(ϵ_{T} ·T) ^{-1/2} anions of mono- and diproctic acids
A, B, C, D,X, Y, Z A, B A ⁻ , A ²⁻ [°C]	pressure of 1 [atm] if the reactants are gases or 1-molal concentration if the reactants are solutes denotes standard state except for 1 reactant (e.g.pH \neq 0) chemical species Debye-Hückel-Onsager parameters A=1.82·10 ⁶ (ϵ_{T} ·T) ^{-3/2} , B=50.3·(ϵ_{T} ·T) ^{-1/2} anions of mono- and diproctic acids temperature in degree Celcius =T/K-273.15
A, B, C, D,X, Y, Z A, B A ⁻ , A ²⁻	pressure of 1 [atm] if the reactants are gases or 1-molal concentration if the reactants are solutes denotes standard state except for 1 reactant (e.g.pH \neq 0) chemical species Debye-Hückel-Onsager parameters A=1.82·10 ⁶ (ϵ_{T} ·T) ^{-3/2} , B=50.3·(ϵ_{T} ·T) ^{-1/2} anions of mono- and diproctic acids temperature in degree Celcius =T/K-273.15 sum of inorganic carbonate species
A, B, C, D,X, Y, Z A, B A ⁻ , A ²⁻ [°C]	pressure of 1 [atm] if the reactants are gases or 1-molal concentration if the reactants are solutes denotes standard state except for 1 reactant (e.g.pH \neq 0) chemical species Debye-Hückel-Onsager parameters A=1.82·10 ⁶ (ϵ_{T} ·T) ^{-3/2} , B=50.3·(ϵ_{T} ·T) ^{-1/2} anions of mono- and diproctic acids temperature in degree Celcius =T/K-273.15
A, B, C, D,X, Y, Z A, B A ⁻ , A ²⁻ [°C]	pressure of 1 [atm] if the reactants are gases or 1-molal concentration if the reactants are solutes denotes standard state except for 1 reactant (e.g.pH \neq 0) chemical species Debye-Hückel-Onsager parameters A=1.82·10 ⁶ (ϵ_{T} ·T) ^{-3/2} , B=50.3·(ϵ_{T} ·T) ^{-1/2} anions of mono- and diproctic acids temperature in degree Celcius =T/K-273.15 sum of inorganic carbonate species
A, B, C, D,X, Y, Z A, B A ⁻ , A ²⁻ [°C] C _r	pressure of 1 [atm] if the reactants are gases or 1-molal concentration if the reactants are solutes denotes standard state except for 1 reactant (e.g.pH≠0) chemical species Debye-Hückel-Onsager parameters A=1.82·10 ⁶ (ε_{T} ·T) ^{-3/2} , B=50.3·(ε_{T} ·T) ^{-1/2} anions of mono- and diproctic acids temperature in degree Celcius =T/K-273.15 sum of inorganic carbonate species = [CO _{2(aq)}]+[H ₂ CO _{3(aq)}]+[HCO ² _{3(aq)}]+[CO ²⁻ _{3(aq)}]
A, B, C, D,X, Y, Z A, B A ⁻ , A ²⁻ [°C] C _r C, H, O, N, P, S [Da] E	pressure of 1 [atm] if the reactants are gases or 1-molal concentration if the reactants are solutes denotes standard state except for 1 reactant (e.g.pH \neq 0) chemical species Debye-Hückel-Onsager parameters A=1.82·10 ⁶ (ϵ_{T} ·T) ^{-3/2} , B=50.3·(ϵ_{T} ·T) ^{-1/2} anions of mono- and diproctic acids temperature in degree Celcius =T/K-273.15 sum of inorganic carbonate species = [CO _{2(aq)}]+[H ₂ CO _{3(aq)}]+[HCO ² _{3(aq)}]+[CO ²⁻ _{3(aq)}] most common chemical elements in organic biomolecules
A, B, C, D,X, Y, Z A, B A ⁻ , A ²⁻ [°C] C _r C, H, O, N, P, S [Da]	pressure of 1 [atm] if the reactants are gases or 1-molal concentration if the reactants are solutes denotes standard state except for 1 reactant (e.g.pH \neq 0) chemical species Debye-Hückel-Onsager parameters A=1.82·10 ⁶ (ϵ_{T} ·T) ^{-3/2} , B=50.3·(ϵ_{T} ·T) ^{-1/2} anions of mono- and diproctic acids temperature in degree Celcius =T/K-273.15 sum of inorganic carbonate species = [CO _{2(aq)}]+[H ₂ CO _{3(aq)}]+[HCO ² _{3(aq)}]+[CO ²⁻ _{3(aq)}] most common chemical elements in organic biomolecules Dalton
A, B, C, D,X, Y, Z A, B A ⁻ , A ²⁻ [°C] C _r C, H, O, N, P, S [Da] E	pressure of 1 [atm] if the reactants are gases or 1-molal concentration if the reactants are solutes denotes standard state except for 1 reactant (e.g.pH \neq 0) chemical species Debye-Hückel-Onsager parameters A=1.82·10 ⁶ (ϵ_{T} ·T) ^{-3/2} , B=50.3·(ϵ_{T} ·T) ^{-1/2} anions of mono- and diproctic acids temperature in degree Celcius =T/K-273.15 sum of inorganic carbonate species = [CO _{2(aq)}]+[H ₂ CO _{3(aq)}]+[HCO ² _{3(aq)}]+[CO ²⁻ _{3(aq)}] most common chemical elements in organic biomolecules Dalton electrochemical potential in [V]=emf
A, B, C, D,X, Y, Z A, B A ⁻ , A ²⁻ [°C] C _r C, H, O, N, P, S [Da] E	pressure of 1 [atm] if the reactants are gases or 1-molal concentration if the reactants are solutes denotes standard state except for 1 reactant (e.g.pH=0) chemical species Debye-Hückel-Onsager parameters $A=1.82 \cdot 10^{6} (\epsilon_{T} \cdot T)^{-3/2}$, $B=50.3 \cdot (\epsilon_{T} \cdot T)^{-1/2}$ anions of mono- and diproctic acids temperature in degree Celcius =T/K-273.15 sum of inorganic carbonate species $= [CO_{2(aq)}] + [H_{2}CO_{3(aq)}] + [HCO_{3(aq)}^{-}] + [CO_{3(aq)}^{2-}]$ most common chemical elements in organic biomolecules Dalton electrochemical potential in [V]=emf standard emf= electrochemical reference potential $[V]=-\Delta G_{r}^{0}/n \cdot F = 2.3026 \cdot R \cdot T \cdot p_{\epsilon}^{0}/F$
A, B, C, D,X, Y, Z A, B A ⁻ , A ²⁻ [°C] C _r C, H, O, N, P, S [Da] E E ⁰	pressure of 1 [atm] if the reactants are gases or 1-molal concentration if the reactants are solutes denotes standard state except for 1 reactant (e.g.pH \neq 0) chemical species Debye-Hückel-Onsager parameters A=1.82·10 ⁶ (ϵ_{T} ·T) ^{-3/2} , B=50.3·(ϵ_{T} ·T) ^{-1/2} anions of mono- and diproctic acids temperature in degree Celcius =T/K-273.15 sum of inorganic carbonate species = [CO _{2(aq)}]+[H ₂ CO _{3(aq)}]+[HCO ² _{3(aq)}]+[CO ²⁻ _{3(aq)}] most common chemical elements in organic biomolecules Dalton electrochemical potential in [V]=emf standard emf= electrochemical reference potential
A, B, C, D,X, Y, Z A, B A^{-}, A^{2-} $[^{\circ}C]$ C_{r} C, H, O, N, P, S [Da] E E^{0} $E^{0'}$	pressure of 1 [atm] if the reactants are gases or 1-molal concentration if the reactants are solutes denotes standard state except for 1 reactant (e.g.pH \neq 0) chemical species Debye-Hückel-Onsager parameters A=1.82·10 ⁶ (ϵ_{T} ·T) ^{-3/2} , B=50.3·(ϵ_{T} ·T) ^{-1/2} anions of mono- and diproctic acids temperature in degree Celcius =T/K-273.15 sum of inorganic carbonate species = [CO _{2(aq)}]+[H ₂ CO _{3(aq)}]+[HCO ³ _{3(aq)}]+[CO ²⁻ _{3(aq)}] most common chemical elements in organic biomolecules Dalton electrochemical potential in [V]=emf standard emf= electrochemical reference potential [V]=- $\Delta G_r^0/n\cdot F = 2.3026 \cdot R \cdot T \cdot p_{\epsilon}^0/F$ standard emf at pH \neq 0
A, B, C, D,X, Y, Z A, B A^{-}, A^{2-} [°C] C_r C, H, O, N, P, S [Da] E $E^{0^{\circ}}$ F	pressure of 1 [atm] if the reactants are gases or 1-molal concentration if the reactants are solutes denotes standard state except for 1 reactant (e.g.pH=0) chemical species Debye-Hückel-Onsager parameters $A=1.82 \cdot 10^{6} (\epsilon_{T} \cdot T)^{-3/2}$, $B=50.3 \cdot (\epsilon_{T} \cdot T)^{-1/2}$ anions of mono- and diprotic acids temperature in degree Celcius =T/K-273.15 sum of inorganic carbonate species = $[CO_{2(aq)}] + [H_2CO_{3(aq)}] + [HCO_{3(aq)}^{-}] + [CO_{3(aq)}^{2-}]$ most common chemical elements in organic biomolecules Dalton electrochemical potential in $[V]$ =emf standard emf= electrochemical reference potential $[V]$ =- $\Delta G_r^0/n \cdot F = 2.3026 \cdot R \cdot T \cdot p_{\epsilon}^0 / F$ standard emf at pH=0 Faraday's constant =96.485309 [kJ·mol ⁻¹ ·V ⁻¹] standard free energy of formation [kJ/mol]
A, B, C, D,X, Y, Z A, B A^{-}, A^{2-} [°C] C_r C, H, O, N, P, S [Da] E $E^{0'}$ F Gf^{0} ΔGf^{0}	pressure of 1 [atm] if the reactants are gases or 1-molal concentration if the reactants are solutes denotes standard state except for 1 reactant (e.g.pH≠0) chemical species Debye-Hückel-Onsager parameters $A=1.82 \cdot 10^{6} (\epsilon_{T} \cdot T)^{-3/2}$, $B=50.3 \cdot (\epsilon_{T} \cdot T)^{-1/2}$ anions of mono- and diproctic acids temperature in degree Celcius =T/K-273.15 sum of inorganic carbonate species = $[CO_{2(aq)}] + [H_{2}CO_{3(aq)}] + [HCO_{3(aq)}] + [CO_{3(aq)}^{2}]$ most common chemical elements in organic biomolecules Dalton electrochemical potential in $[V]=emf$ standard emf= electrochemical reference potential $[V]=-\Delta G_{r}^{0}/n \cdot F = 2.3026 \cdot R \cdot T \cdot p_{\epsilon}^{0}/F$ standard emf at pH≠0 Faraday's constant =96.485309 [kJ·mol ⁻¹ ·V ⁻¹] standard free energy of formation [kJ/mol] standard Gibbs free energy change of formation
A, B, C, D,X, Y, Z A, B A^{-}, A^{2-} [°C] C_r C, H, O, N, P, S [Da] E E ⁰ $E^{0^{\circ}}$ F Gf^{0}	pressure of 1 [atm] if the reactants are gases or 1-molal concentration if the reactants are solutes denotes standard state except for 1 reactant (e.g.pH=0) chemical species Debye-Hückel-Onsager parameters $A=1.82 \cdot 10^{6} (\epsilon_{T} \cdot T)^{-3/2}$, $B=50.3 \cdot (\epsilon_{T} \cdot T)^{-1/2}$ anions of mono- and diproctic acids temperature in degree Celcius =T/K-273.15 sum of inorganic carbonate species = $[CO_{2(aq)}] + [H_{2}CO_{3(aq)}] + [HCO_{3(aq)}^{-}] + [CO_{3(aq)}^{2-}]$ most common chemical elements in organic biomolecules Dalton electrochemical potential in $[V]$ =emf standard emf= electrochemical reference potential $[V]=-\Delta G_{r}^{0}/n \cdot F = 2.3026 \cdot R \cdot T \cdot p_{\epsilon}^{0} / F$ standard emf at pH=0 Faraday's constant =96.485309 [kJ·mol ⁻¹ ·V ⁻¹] standard free energy of formation [kJ/mol]

$\Delta G_r^{0'}$	change of Gibbs free energy of reaction at standard conditions except
	for one reactant (e.g. at pH≠0)
ΔG_r	change of Gibbs free energy of reaction at actual conditions
H^+	proton
Hf^{0}	standard enthalpy of formation [kJ/mol]
$\Delta H f^0$	standard enthalpy change of formation
ΔH_r^0	change of enthalpy of reaction at standard conditions
ΔH_r	change of enthalpy of reaction at actual condition
HA, H_2A	mono- and diprotic acids, protonated
Ι	ionic strength = $\frac{1}{2} \sum_{j} c_{j} \cdot z_{j}^{2} [mol / l]$
IAP	ionic activity product
[J]	Joule
[K]	temperature in Kelvin degree
K	dissociation, equilibrium or solubility coefficient
	temperature and/or ionic strength corrected dissociation coefficient
	thermodynamic acid dissociation coefficient
K _D	Ostwald coefficient = $K_{H} \cdot R \cdot T[-]$
	thermodynamic equilibrium coefficient
log Keq	$= -\Delta G_r^0 / 2.3026 \cdot R \cdot T$
	Henry's law constant [mol·1 ⁻¹ ·atm ⁻¹]
K _H K _s	thermodynamic solubility product for standard conditions
K ['] s	actual solubility product for I≠1
K ^σ _s	
	operational solubility product for standard conditions at I=1
	dissociation coefficient of water $k_{1}^{(1)} = 10^{3}$ Jaule
[kJ]	kilojoule = 10^3 Joule sum of inorganic sulfate species = $[H_2SO_4] + [HSO_4] + [SO_4^2]$
L _T	
M	sum of minor elements in organic molecule
P	reaction-product 10^{-3}
[Pa]	1 Pascal $= 9.86923 \cdot 10^{-6} [atm] = 7.50062 \cdot 10^{-3} [Torr]$
Q Q	ratio of actual activity products of reactants
Q	ratio of actual activity products of reactants excluding protons (or/and electrons in half-reactions)
-R-	rest of organic molecule, mostly C-entity
R^+	average of oxidation state of M
R	gas constant = $8.31451 \cdot 10^{-3}$ [kJ·mol ⁻¹ ·K ⁻¹] (concentration basis)
	=82.057844 \cdot 10 ⁻³ [atm \cdot l·mol ⁻¹ ·K ⁻¹] (pressure basis)
S	substrate
Sf ⁰	standard entropy of formation [J/K·mol]
$\Delta S f^{0}$	standard entropy change of formation
$\Delta \mathrm{S_r^0}$	change of entropy of reaction at standard conditions
ΔS_r	change of entropy of reaction at actual conditions
S _T	sum of inorganic sulfide species = $[H_2S] + [HS^-] + [S^{2^-}]$
Т	thermodynamic temperature in [K]

U	oxidation state (number of) carbon in an organic molecule
[V]	volt
\mathbf{V}_0	molar volume of ideal gas (at $p^0=1$ bar, T=273.15 K) =22.71108 [l·mol ⁻
	¹], $\doteq 22.41409[1 \cdot mol^{-1}]$ for $p^0=1[atm]$ and $T=273.15$ K; for $p^0=1[atm]$
	and T=298.15 K, V_0 =24.46554[l·mol ⁻¹]
W	number of possible structural configurations
Х, Ү	chemical species