Sulfid quantitativ, kolorimetrisch

Prinzip

Die quantitative Sulfidbestimmung erfolgt nach der Methylenblaumethode (Cline, 1969; Gilboa-Garber, 1971). Analysiert werden die Gesamtmenge an in der Probe vorliegendem Sulfid, d. h. das gelöste Sulfid, Summe von Schwefelwasserstoff (H₂S), Hydrogensulfidion (HS⁻), und Sulfidion S²⁻, sowie das ungelöste säurelösliche Sulfid.

Reaktion: Schwefelwasserstoff reagiert mit N,N'-Dimethyl-1,4-phenylendiamin (DMPD, I) über die Zwischenverbindung 3-Mercapto-N,N'-Dimethyl-1,4-phenylendiamin (II) zum farblosen Leucomethylenblau (III), welches durch Fe³⁺ zu Methylenblau (IV) oxidiert wird. Methylenblau absorbiert Licht der Wellenlänge 665 nm.

$$(CH_3)_2N + H_2S \rightarrow (CH_3)_2 N + H_2N \rightarrow (CH_3)_2 N \rightarrow (CH$$

Anwendungsbereich/Störungen

Daten zur Sulfideichkurve (nach Känel & Mez, 1992)

Anion	Sulfid			
Eichgerade	$y = -2.0451 + 275.03x$ $R^2 = 0.984$			
Gültigkeitsbereich (µM)	8.77-142			
LQDC (µM)	2.52			
Rel. Standardfehler <10% (µM)	Für Konz. von: 8.77-142			
Rel. Standardfehler >10% (µM)	Für Konz. von: 2.52-8.77			

LQDC lowest quantitatively determinable concentration

Die beschriebene Reaktion wird bei hohen Sulfidkonzentrationen gestört und bei sehr hohen (einige hundert Milligramm pro Liter kann sie vollständig negativ ausfallen.

Reagenzien für Sulfidbestimmung

• Lösung 1

 $0.400\ g\ N, N'-Dimethyl-1, 4-phenylendiammonium$ sulfat (4-Amino-N, N-dimethylanilin $sulfat):\ giftig!$ $40\ ml\ konzentrierte\ H_2SO_4\ (Vorsicht!)$

60 ml destilliertes H₂O

Salz in einem Messkolben in der Säure (im Eisbad) lösen, dann langsam destilliertes Wasser zugeben. Die Lösung ist gekühlt und vor Licht geschützt einige Wochen haltbar.

• Lösung 2

2 g Ammoniumeisen(III)sulfat Dodecahydrat: NH₄Fe(SO₄)₂·12 H₂O

98 ml destilliertes H₂O, 2 ml konzentrierte H₂SO₄ (Vorsicht!)

Die Lösung ist gekühlt und vor Licht geschützt einige Wochen haltbar.

• Lösung 3

Gleiche Volumina der Lösungen 1 und 2 mischen; das Reagens ist kühl und dunkel aufbewahrt nur wenige Stunden haltbar.

• Fixationsmittel (Zinkacetatreagens)

4% (w/v) Zinkacetat in 2% (v/v) Essigsäure:

40 g Zinkacetat in 20 ml konz. Essigsäure lösen (Zinkacetat-Reagens) und mit 980 ml gekochtem destilliertem Wasser auffüllen.

Reagenzien für iodometrische Titration

• Sulfid-Stammlösung

0.15 g Na₂S[.]9 H₂O waschen mit Papier trocknen und in 500 ml gekochtem, destilliertem Wasser lösen. Die Endkonzentration beträgt zirka 1.25 mM.

• Kaliumiodatlösung

1.07 g KIO₃ in 500 ml gekochtem destilliertem Wasser lösen.

• Mischsäurereagens

5 ml konzentrierte H₂SO₄, 5 ml konzentrierte H₃PO₄, 40 ml gekochtes destilliertes Wasser.

• Natriumthiosulfatlösung

0.02 M (0.1 N Titrisol-Lösung, fünfmal verdünnt)

• Stärke-Indikatorlösung

5 mg lösliche Stärke/ml in gekochtem destilliertem Wasser lösen.

• *Probenkonservierung:* 0.5 ml Fixationsmittel (Zinkacetat-Reagens) in Glasgewindefläschen (Totalvolumen 3 ml) vorlegen.

Probenanalyse

- 2 ml Wasserprobe zupipettieren.
- Fixierte Probe gut mischen und bis zur Analyse bei 4°C aufbewahren.
- 0.5 ml Lösung III zur fixierten Probe hinzufügen.
- Glasgewindefläschehen verschliessen und Probe mischen.
- Reaktionsgemisch während 30 Minuten im Dunkeln inkubieren.
- Absorption bei 665 nm in einer 1 cm-Küvette bestimmen. Der blaue Farbkomplex ist ca. während 1 h stabil.

Standards

Verschiedene Konzentrationen an Sulfid werden durch geeignete Verdünnung einer Sulfidstammlösung bekannter Konzentration mit destilliertem Wasser hergestellt. Die Eichkurve sollte mindestens 9 versch. Konzentrationen (ca. 0-80 µM) erfassen.

• Die effektive Konzentration der Sulfidstammlösung (Natriumsulfidhydrat ist nicht stöchiometrisch) mit einer iodometrischen Titration ermitteln.

Iodometrische Titration

- In 200 ml Enghals-Erlenmeyerkolben 25 ml Kaliumiodatlösung, 250 mg Kaliumiodid und 50 ml bzw. 25 ml bzw. 0 ml H₂O_{dest.} geben. O ml bzw. 25 ml bzw. 50 ml Sulfidstammlösung zufügen (sh. Ansatzschema).
- 5 ml Mischsäurereagens in Erlenmeyerkolben zugeben, mit Uhrglas zudecken und ca. 1 Minute lang gut mischen ⇒ Iodfreisetzung.
- Mit Natriumthiosulfatlösung bis fast zum Verschwinden der gelben Iodfarbe titrieren.
- 5 ml Stärke-Indikatorlösung zugeben.
- Mit Natriumthiosulfatlösung bis zur vollständigen Entfärbung titrieren (milchig-reinweiss).
- Mit den übrigen 5 Ansätzen ebenso verfahren.

Ansatzschema						
Stammlösung [ml]	0	0	25	25	50	50
H ₂ O dest. gekocht [ml]	50	50	25	25	0	0
verbrauchte Na ₂ S ₂ O ₃ ⁻ Lösung [ml]	\mathbf{u}_1	\mathbf{u}_2	\mathbf{v}_1	\mathbf{v}_2	\mathbf{w}_1	\mathbf{w}_2

Berechnungen

Aus den verbrauchten Na₂S₂O₃-Volumina berechnet sich die effektive Konzentration der Stammlösung an Sulfid wie folgt:

$$u = \frac{u_1 + u_2}{2} [ml] \quad v = \frac{v_1 + v_2}{2} [ml] \quad w = \frac{w_1 + w_2}{2} [ml]$$
$$u - v = \Delta_1 [ml] \quad v - w = \Delta_2 [ml]$$

 $(\Delta_1 + \Delta_2)$ entspricht dem Thiosulfatvolumen, welches für die Titration der in der unverdünnten Stammlösung vorhandenen Sulfidmenge nötig ist.

1 ml verbrauchtes 0.02 N Thiosulfat entspricht 320.6 μg S^2 respektive 10 μmol S^2 . Also: $(\Delta_1 + \Delta_2)^{-1}$ 10 μmol S^2 = x μmol S^2 in 50 ml Stammlösung.

Hinweise

Die Reaktion wird in möglichst kleinen Gefässen durchgeführt, um das Luftvolumen über der Probe gering zu halten und somit H₂S-Verlust durch Oxidation zu minimieren.

Bei der iodometrischen Titration wird hier in Konkurrenz zur Oxidation von Iodid Sulfid zu S⁰ oxidiert. Deshalb sinkt mit steigendem Sulfidgehalt im Ansatz der Thiosulfatverbrauch bei der Titration.

Literatur

- Cline J.D. 1969. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol. Oceanogr. 14: 454-458
- Gilboa-Garber N. 1971. Direct spectrophotometric determination of inorganic sulfide in biological material and in other complex mixtures. Anal. Biochem. 43: 129-133
- Känel B, Mez K. 1992. Vielfalt und Dynamik mikrobieller Stoffwechselaktivitäten in der Redoxtransitionszone des Lago di Cadagno. Diplomarbeit Universität Zürich