

Microbial Ecosystem Evolution Biogeochemical Nutrient Scavenging is a Prerequisite

G. Igbal, M. Yuhana and K. Hanselmann

University of Zürich, Microbial Ecology Group, Zollikerstr. 107, 8008 Zürich http://www.microeco.unizh.ch

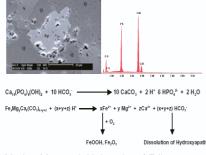
Naturally oligotrophic high-mountain lakes are excellent ecosystems for the study of early evolutionary processes

Objectives

- Which are the geochemical and microbiological processes that might have governed ecosystem evolution in the Precambrium?
- Where did the phosphorous compounds come from ?
- How was P concentrated from dilute solutions to amounts needed to synthesise phosphatecontaining biomolecules?
- Was self-trophication through iron cycling a nutrient scavenging process?
- Do "Early Earth" conditions still exist on earth today?

Model systems in oligotrophic environments

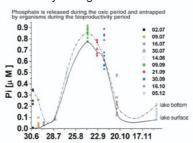
Lakes in deglaciating areas are evolving ecosystems

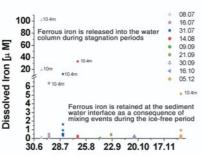

Where do nutrients come from ?

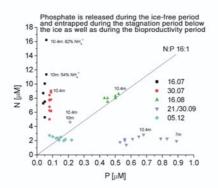
Nutrients of atmospheric origin

	Inorganic substances in snow at a remote high-altitute site (Jungfraujoch 3450 m a.s.l.)		
	w/o. Sahara dust [g/m³, ppm]	w. Sahara dust [g/m³, ppm]	maximal values [g/m³, ppm]
Cl:	0.10	2.06 (x 21)	4.38
NO ₃ -	0.65	0.99 (x 1.5)	2.09
SO ₄ 2-	0.65	4.09 (x 6.3)	6.00
NH ₄ *	0.13	0.44 (x 3.4)	0.48
HPO ₄ 2-	?	?	?
Na⁺	0.06	2.01 (x 33)	3.83
K*	0.04	0.44 (x 11)	0.58
Ca2+	0.24	7.10 (x 30)	11.1
Mg ²⁺	0.03	0.82 (x 27)	1.22

For Jungfraujoch March, 1-29,1990, Sahara dust event March 20 -23, 1990 p 657 mbar, T_{str}-11.2⁹C (PSI, Annual reports, Gäggeler, H., et al.)

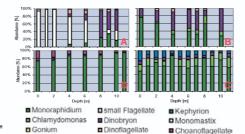

Nutrients of lithosperic origin: Hydroxyapatite and Ankerite in carbonate veins are sources of phosphate and ferrous iron




Marino Maggetti, University of Fribourg

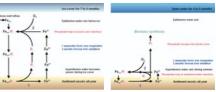
How ecosystems retain nutrients

by chemical means by biological means



Seasonal and spacial nutrient fluctuations lead to rapid adaptation in community composition

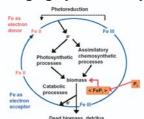
A: July 16, ice melting period
B: July 30, end of ice melting period
C: Sept. 29, height of bioproductivity
D: Dec. 5, beginning of ice cover period



Nutrient entrapment is driven by iron cycling

Self-trophication mechanisms

Winter situation Summer situation


Ferric oxide coated rocks and ferric oxide layers cover the lake bottom

- While the hypolimnion becomes anoxic phosphate and ferrous iron are released from the sediment.
- In the oxidizing water layers ferrous iron gets re-oxidized, thereby scavenging phosphate into its ferric oxyhydroxide matrix.
- Phosphate is stripped from the water and retained in ferric oxyhydroxide colloidal nanoparticles.
- When the oxidation zone is compressed at the sediment water interface, ferrous iron is re-oxidized at the lake bottom while phosphate can escape into the water column.
- Thus P no longer limits biosynthesis under late summer conditions.

Early earth nutrient scavenging by the iron cycle

